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near the front, The maximum displacement of the latter corresponds to the neighbor-
hood of the pressure singularity,
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Centered waves and strong discontinuities in a perfectly conducting mag -
netizable incompressible medium are investigated, It is shown that inshock
waves in such medium the magnetic field tangential to the discontinuity
plane and the magnetic induction increase, and the magnetic permea -
bility decreases, In centered waves the tangential magnetic field and mag-
netic induction decrease. The problem of disintegration of an arbitrary
discontinuity in a magnetizable perfectly conducting incompressible
medium is solved by constructing diagrams in the plane of components of
the tangential velocity initial shock, The diagrams make possible the det-
ermination of the combination of waves and discontinuities formed at
disintegration,

Let at the initial instant of time t¢= 0 parameters B, H_, v_, and T become

discontinuous in the plane z = 0.
SR A ({ A SR . If.the: laws of conservation ar.e not sat%sf%ed at
the discontinuity, the latter cannot exist, and it is
I necessary to determine the motion of medium: at the
o'\ A 21 o following instants of time, The self-similarity of the
| problem implies that the motion must consist of a com-
bination of shock waves §, centered waves &, rota~
Fig. 1 tional Alfven discontinuities A and a contact
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discontinuity K. It will be shown below that the propagation velocity of such waves
(with the model considered here ) is such, that two waves may propagate in each dir -
ection from the contact discontinuity that separates them (Fig, 1) . The gasdynamic
problem of the disintegration of an arbitrary discontinuity in a perfect gas was solved
in [1,2], for a medium with an arbitrary equation of state it was solved in [3], and
for combustible mixtures in [4] ., The magnetohydrodynamic problem of disintegration
of an arbitrary discontinuity was solved in [5].

We denote the parameters that define the medium at the initial instant of time
by the subscript zero, Parameters of the medium that lies at the initial instant of time
to the left of the discontinuity plane and subsequently to the left of the contact dis -
continuity plane are denoted by a prime. Parameters of the medium lying to the right
of corresponding surfaces are denoted by letters without primes, and parameters of the
medium behind the first wave moving either right or left are denoted by the numeral 1,
while those behind the A -discontinuity by numeral 2 .

1, Basic equations, The system of equations that defines continuous flows of a
magnetizable perfectly conducting fluid may be written as [6-8]

ﬂ-—l—div v=0 = 1 o (1.1)
% pv =0, P—Po+mg(p——p$) HaH
0

oI = Vp+ = rot Hx B + BYE =

%(97+9Um>=—div{pv< + 2 +U p)+&ExH}
ZTB+(VV)B=(BA)V, cE=-—v><B, B =pH =H 4 4aM

Up=U,,+ LBH-I--Z;?_(T"—”_M)HM

where the notation is the same as in [8] . It is possible to obtain from (1, 1) in a system
of coordinates in which the discontinuity is at rest the relationships valid at the dis-
continuity surfaces [7]

{pvn} =0, {pvn2 +p— Ban / 4313} =0 (1'2)

{B.} = 0, B, {v:} = {vaB:}, oo, {v:} =B, {H:} / 4n
B H

{pv,. (§ + 2+ U an") — EHo}=0

where subscripts T and ” denote vector components tangent and normal to the dis -
continuity surface {F} = F, — F,, where Fy and F, represent values of F to
the left and right of the discontinuity, respectively. The solution of systemn (1.2) must
satisfy the condition of nondiminution of entropy

(Sama 5 (), 0t} >0
0

(1.3)
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where SH=o is the entropy of the medium in a zero magnetic field, Subsequently
we consider an incompressible saturated magnetic material which satisfies the
following equations of state :
p=const, Upo=¢T, M=K(@® —1) (1.4)
where © is the Curie temperature and K = const.
2, Centered waves in an incompressible perfectly conducting magnetizable medium,
We seek a solution of system (1, 1) of the form

ve=v.(%), T=T(;)j p:p(;) 2.1)

B=B, [1 +b(-f-)], vl =bl =0
where | is a unit vector directed along the x -axis, From system (1. 1) we obtain for
the definiyon é)f propagation of simple centered waves the equations

p— ";m"=const, T(0) = eexp{mB(V1+ 02—V 1+ b2 +
m7 (b) — mve} (2.2)
v, ab v, aZ 8
4nM (t, b) x B2
by =1 — —1 7 = — 2 . J0
f() Bnm’ E : ! ao 4ﬂp
_ T LT oy 1Bul o BS 4nK®
e’ 0—‘61 0—T7 —W, m == Bn

where By and Ty are the magnetic indugtion and the medium temperature in the
unperturbed state. From the third and fourth equations of system (2. 2) we obtain

(gl - vn)2 = aozf (b)a (gz - vn)2 = a02 (f + oyfby, "l“ bszz’) (23)

Since in a centered wave propagating at velocity él the absolute value of the

magnetic induction vector does not change, hence § = const. Such centered
wave degenerates into a weak discontinuity that propagates at the Alfven velocity. In
a wave that propagates relative to the medium at velocity 2 = s — v, the direction
of vector B does not vary, the wave may be considered to be plane, The propagation
velocity of a wave can be defined by

B 2p2
2(h) = 2 n 4nM mpv
C0) = ad np (1 + %) [Bn“ + b2 + 1-—mr5't:| 24)
B2
4" = Tmow

The tangential velocity distribution in such wave is linked with vector } by the
relation b

Ve=veoF - { a(b)db

be

(2.5)

where Yz is the velocity of unperturbed medium. The propagation velocity of the
simple wave @ () and the relation between parameter V. and b (2.5) in the wave
were determined in [9].
Let us consider the variation of quantities in a plane centered wave (2. 5)
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where 9b/ 0t = &/ (ada/ 8b), which implies that sign (95 / 9E) = 4= sign
(0a / 3b).

The upper and lower signs in this formula and in (2. 5) correspond to centered
waves moving to the right and left, respectively.

wWhen (da/ db) _ 0 only centered waves for which the absolute value of mag-

netic induction vector decreases are possible, while for (0a / 0b) << Q the absolute
value of that vector increases. Inthecaseof § &1, m <1

da B2 3(1—T(b)d Srofmb 0 (2 6)
— n ‘ .
b 4npa (b) [ (14 b-.‘a)’fi i+ b?-)‘é.Jl —>

only centered waves for which the absolute value of the magnetic induction vector de-
creases are possible, It follows from the second of Eqs, (2. 2) that for p <1 and
m =C 1 the initial temperature distribution in waves remains unchanged, and the
magnetic induction vector is expressed in terms of the magnetic field by
B=H-<+ lmK'(gi-T) H 2.7)
Let us compare the propagation velocity of weak perturbations @ with the Alfven
velocity @a. It isseen from (2.4) that a (b) << aa when mft > 1ande (0)>> aa
when mPr<<{ When B<€1 and m 1 the velocity of small perturbations
a (b) is higher than the Alfven velocity i
a(B) > as ©8)
By expressing the magnetic induction vector B, in terms of the magnetic field
vector H asin formula (2, 7), the relationship at centered waves (2. 5) can be written
in the form

_— H
Ve = Vo F 1 (| Ha |, |Hel) }_H% , _a%&..>0 (2.9)
1 k3

3. Shock waves in a ggrfectlz conducting magnetizable medium,

The relationships at a shock wave in incompressible fluid were considered in [9] . It
was assumed there that in a zero magnetic field the enthalpy is proportional to the
temperature Wy = ¢7. Here we use the relationship U,,, = ¢T, where Uy, is
the internal energy of fluid in a zero magnetic field. This explains why the results of
shock wave investigation in the present work differ from those in [9], With allowance
for (1. 4) systern (1. 2) can be transformed to

Flr={o(1— o2V 4 am(y THP —m) + T

Vi+e
3 3 __m _ B2
VTF B — m) 2b5(1 V1+b2)}’ W=

m = m(1—1)
(Beo By {v<})

The condition for the nondiminution of entropy (1.3) is of the form

(0 > [exp {mpV T B3 (*52 + AN -1 e
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1 - by? b
o=9& =) 1o, t=b
The fourth of Eqgs. (3. 1) is a quadratic equation with respect to the temperature jump
{t}. When § <€ 1and m << 1one of the roots {t}; ~ 1/f has no physical
meaning, and the second can be written in the form

Vitoi(l— bo2(E — 1 —1 m (1 — 1)
{r}=p<’" +;( Q) __ bt )r2r»o<£cp )), '”°="Tb:=(3‘3)

It follows from this that in such shocks the temperature of medium does not change.
For P<€1and m <1 condition (3. 2) is transformed to

(1} > mpr, VI + 02 (d — 9)g? (3.4)
With allowance for (3. 3) and (3. 4) we have
A+ 22 SHE—1)Ee+ 1) (3-5)

Condition( 3. 5) implies that &, > b,. Hence shock waves which increase the magnetic
induction and magnetic field vectors are possible, The magnetic permeability is in
this case diminished,

From the first of Eqs. (3. 1) and Eq. (3. 3) follows

—1
'Y2= (1 —_ mo)—l <1 - mo %‘_1') (3'6)
_ m{i—To) — Pn _ o1 1 —m)
my == V—_—ﬁ-__ boz ) a4 ( 0)

Using the inequalities Mo << 1 and 0 < (B¢ — 1)/ (§ — 1) <1 (the 1atter
inequality is valid for any £ >> 0 and b, > (), from (3. 6) we obtain 1 < y* <
(1 — mg)™). The last formula shows that the considered shocks can only propagate
at velocities higher than the Alfven velocity. The second of Egs. (3.2) determines the
relation between tangential components of the magnetic induction vector and the vel-

ocity of medium Vi — Veo = T @ag | 7 (by, bo) | (by — by) 3.7

where the upper and lower signs relate to waves propagating to the right and left, res -
pectively, Using formula (2. 7) for expressing the magnetic induction vector in terms
of the magnetic field vector we obtain

Vi — Voo = F ¥ ({Ha |, | Heg|) (Hey — Hey), ¥ >0 (3.8)

Using the method proposed in [11, 12] for investigating the interaction between a shock
wave and small perturbations propagating at velocities[®]Jaa=8, / V 4npp., @ and q;
( a1 is the velocity of entropy wave propagation), for the condition of shock wave
evolution we obtain

v, > max {@ag, a1} G0 X Un SOy (3.9)
ay <

or vy, << min {aag, G4y}, Qo < Up < &
when B<€1 and m <1 Eq. (2.4 and the second of Egs. (2. 2) may be written
in the form B 2 (1 _ m(—1) + b‘-“mﬁﬁto)

a? = -
4np (1 - b2y 14 62

(3.10)
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T=1,[1 +mp(Y1+85 + mt,)] (3.11)

which are accurate to within infinitely smalls of order p2 . The condition a; > @,
with Eqs. (3. 10) and (3. 11) imply that

—l 47+ T'o’ﬂm2 > —1 4 %o 4 T?pm? (3.12)
A+ b {1+ bA™
When B <€ 1 the inequality — 1 + 7, + 1Pm? <O s always satisfied, and
from inequality (3. 12) follows that b, > &,. Conditions (3. 9) are satisfied when the
inequality b; > b, is satisfied. Henceforth the case of P €1 and m <1
will be considered.
All calculations and estimates presented in Sect. 3 are valid for § <€ min
{ve» 1 — 7} / mPb,. This inequality imposes a restriction on the magnetic induct-
ion vector behind the shock wave.
4. Conditions at rotational and contact discontinuities in perfectly conducting
incompressible .magnet{sable media, At a rotational discontinuity only-H,and
sv. , i.e, the tangential components of the magnetic field and velocity respectively
are discontinuous, while the magnetic field remains unchanged.

The variation of tangential velocity components and of the field is defined by the
relation

Vap = Vg =F —aB}f' (H12 — Hu) (41)

The upper and lower signs correspond to waves propagating to the right and left,
respectively, At the contact discontinuity

H,= Hey vy = V;z ( 4.2)
The temperature and pressure may be discontinuous,

5. _Disintegration of an arbitrary discontinuity (the plane case). Let us consider
the plane problem of disintegration of an arbitrary discontinuity Heo | H':g | Vo | V<o’
Below in this Section we omit the vector symbol and the subscript T . The condition
of evolution (3, 9) and the second of equalities (2. 7) imply that a shock wave.§ or
centered wave R propagate to both sides of the contact discontinuity, which are fol -
lowed by Alfven discontinuities Such flow is diagrammatically shown in Fig. 1.

Let us consider in the pH -plane the curves defined
by Egs. (3.8) and (2. 9) which in Fig. 2 are, respectively,
denoted by letters § and R These curves issue from
points with coordinates 9y, H,y and »y’, H,'and corres-
pond to waves propagating to the right through the medium
with parameters v, , H, ,2ndT, ,and totheleft through the
medium with parameters »,’, H,’,and Ty respectively.
The curves shown emanating from point O: in the lower
half-plane in Fig. 2 correspond to waves § and R which
move to the right and left through the medium in which
the tangential component of the magnetic iield is neg -
ative. The tangential component of the magnetic field
may decrease to zero in the case of centered waves,
while in shock waves it can increase from zero to ©©.

Fig, 2

InFig, 2 is shown the case whenHy << Hy’ andv, << ,/, and the line that corresponds to
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the centered wave moving to the left through the medium with parameters v,”, Hy' and
Ty’ intersects the line that corresponds to the centered wave moving to the right through
the medium with parameters of state denoted by subscript zero (these two curves are
shown in Fig, 2 by solid lines),

The intersection point A4 at coordinates v, H, corresponds to the state behind the
fronts of centered waves moving in opposite directions away from the initial discon -
tinuity. This represents the particular case of disintegration of an arbitrary discon -
tinuity into two centered waves : RKR. A contact discontinuity may exist between
these waves at which the temperature and pressure are discontinuous. The case in
which wave R moving through the medium with parameters vy, Hy', and T
does not intersect wave R but intersects wave § which moves through the medium
with parameters vy, Hy, and Ty is shown in Fig. 2 by a dash line. The point of
intersection is denoted by B whose coordinates correspond to the state behind the
fronts of the shock wave running to the right and the centered wave unning to the left
of the initial discontinuity,

A contact discontinuity, at which the temperature and pressure are discontinuous,
exists between such waves. We have the particular case of disintegration of an arb -
itrary discontinuity into a shock and a centered wave : RK.S. The regions of existence
of combinations RKR and RKS are separated by the line emanating from point

vo”o and defined by the equation vy = v -+ % (Ho, H) (Fig. 3). This line
corresponds to a centered wave that propagates to the left and changes the magnetic
field and velocity from vy and Ho' to pHo.  Such line represents the solution
of the problem of disintegration of an arbitrary discontinuity into a centered wave
moving to the left and a contact discontinuity BRK.

+
H L

RKS Bma RAKAS L
el
S 7
SKS miaR &f <
Ny 4
€ ¥
Or
Hy [ s
W4
[ ~SAKARS
) [? v, # v
SAKC oy N /ﬁﬁ'ﬁ 0)\5,“”;2 n (]
S/ 4w S SKAS
7 [t
02/ L U
P & RKAR N
S// RAKR < « e
) ~
V}/RAKS A RKAS \L‘z
Ly, ftmez”

Fig. 3
The boundaries of all regions in which one or the another variant of disintegration
of an arbitrary discontinuity into two waves moving in opposite directions is realized
can be similarly constructed in the pH -plane for fixed ¥, H,, and Lo
Sixteen regions are shown in Fig, 3. in the »H -plane, Each of these corresponds
to a particular combination of two waves moving to the right and left,of A ~dis~
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continuities which follow these and rotate the magnetic field by 480°, and of a con-
tact discontinuity lying between these,

Let us consider the regions of parameters denoted by subscript zero atwhichthe dis-
integration of an arbitrary discontinuity is not accompanied by A-discontinuities. Four
combinations are possible; RKR, SKS, RKS and SKR. The regions of these con-
figurations lie in the upper half-plane to the left of line Lf max which is defined

by th ti ,
y the equation v“—x(O,Ifn)=v+x(0,H} {5'“

This line represents the relation between quantities in the centered wave which prop -
agates to the left; it makes it possible to reach ? (0), where () is the point of inter-
section of the line, which cormesponds to the centered wave moving through the medium
with parameters %y, Hy, and T, with the axis H = Q.
The line issuing from point vy, H, cormesponds to combinations REK, K.§,
§K,and KR (Fig.3) . The equations of these lines are

RK: vo= v+ y{(Hs H)y, v> 17, (5.2)
KS: v=0,—Y(H H)H—H})y v<7

SK: wy= v+ Y (Hy H)(Hy — H)y v<1

KR: »=1v, —y(HyHe)y 227

To the right of line LRmax and in the lower halfplane lie regions of parameters
vy'H,' in which Alfven discontinuities that turn the magnetic fleld vector by 180°
must necessarily accompany the disintegration of an arbitrary discontinuity.

Let us consider all possible states O in which the disintegration of an arbitrary dis=
continuity is accompanied by two A -discontinuities that propagate in opposite direc=
tions from the initial discontinuity behind the S~ or K ~waves, Each of these A ~dis~
continuities turn the magnetic field vector by 180°, The points that correspond to such
states He in the upper part of the vH -plane to the right of line Lg max which is defined
by Eq. (5. 1) (Fig.3). We draw through point O, with coordinates K, vy4 = 2H, X
(@agito +@aotty’)/ By-}- v, line La which for 0 << H << H, corresponds to com-
bination AKAR and for ff > H, to AKAS ., The equation of that line is of the form

v= v — x (H, Ho} + 2H (aaohy + aaoite’) / Bny 0<<H < H, (5.3)
v=9, — ¥ (H, H) (H — Hy) + 2H (aaoko ~+ aaolty’) / Bn,
H>Hy
We draw through point O, the lines
Vps = 1’+X(Hos 'H}i H>Hé (5‘4)
voa = v+ ¥ (Hy, HY (Hy, — H), 0 < H<H,

Lines (5, 3) and (5. 4) divide the region lying to the right of line Limax into
four parts whose points correspond to the disintegration of an arbitrary discontinuity into
the following combination of waves : RAKAR, RAKAS, SAKAR,and SAKAS.
If the point corresponding to the state ()’ lies in the lower half-plane H," <C O,the
combination of waves at the disintegration of an arbitrary discontinuity contains one
Alfven discontinuity which tums the magnetic field by 180° and runs to the right ot
left of the contact discontinuity. Eight regions which correspond tovarious combinatiofs
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of waves and discontinuities and contain one such Alfven discontinuity are shown in
Fig. 3 in the lower half-plane H < 0.These regions are separated from one another by
lines Lp max La1 and Lay, . Line Lgmax passes through point v (0), O is
defined by the equation

vo=0v-+x(0, —H) + x (0, H), H<O (5-5)

and corresponds to the disintegration into the combination RK R. To the left (right)

of line Lrmax lie regions whose points correspond to parameters with subscript 0’
for which arises a single A -discontinuity running to the left (right) of the contact discon
tinuity,

Lines La, and [,, plotted in the lower half-plane v pass through point

v (0), 0. Line L4, corresponds to the combination AKR when —Hy << H <0
and when J << — H to AKS. Line L4, corresponds to combinations K AR and
KASvwhen—H, < H << Qandfy<< — Hrespectively (Fig. 3). The equations of
these lines are

Lay: v = vy — % (—H, Hy) + 2Haopy' / By, —H,<<H<<0 (5.6)

v=1vy + ¥ (—H, Hy) (H + Hy) + 2Hausopy' / B,, H < —H,

Lay: v =10y — g (—H, Hy) — 2Hausgpy/ Bny, —Hy<<H<<0 (5.7)

v=v,+ ¥ (—H, Hy) (H+ Hy) — 2Haagpho/ Br, H < — H,

Curves which relate to wave combinations RAK and SAK (Fig.3) issue
from point O, of line Ly, at coordinates vga; = vy — 2a40'wo'Ho / Buy H,
The equations of these curves are, respectively, of the form

Voay = v + ¥ (Ho, — H), HK — H, (5.8)
voay = v — ¥ (Hyy —H) (Hy + H), —Hy<H<O0

Similarly, point Oy of line L4, at coordinates —Hy, ¥oas = v, +
2a400¢Hy / B, is the origin of curves which relate to combinations RK A
and SKA.  The equations of these curves are, respectively, of the form

Voaz = v + ¥ (Ho, —H), H < —H, (5.9)
vOA2:U+‘P(H01 _H) (—-HO-—H), -H0<H<O

Lines (5. 5) - (5. 9) divide the lower half-plane into eight regions that correspond
to the following wave combinations SAKS, SAKR, RAKR,RAKS, SKAS,
SKAR, RKAS, and RKAR(Fig. 3). Itisseen from Fig. 3 that there exists altogether
thirty six possible combinations of waves and discontinuitiesof the .§, R, K and A type
when an arbitrary discontinuity disintegratesin the plane case with H | H,' || v, | v’

6. Disintegration of an arbitrary discontinuity ( the three-dimensional case),
Let us consider the three-dimensional problem of disintegration of an arbitrary dis -
continuity in which the vectors of velocity and magnetic field lie in different planes
on both sides of the discontinuity plane. The conditions at the contact discontinuity
cannot be satisfied without the introduction of three-dimensional Alfven discontinuities.

We construct the solution of the problem in the plane Av = vy — Vo'

Aw = wo — Wy’ of the differences of velocity projections on the y - and z -

axes to both sides of the discontinuity, Inthe AwpAw -plane the combinations of
two S- or R-waves propagating in various directions from the initial discontinuity
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are represented by regions, while combinations of less than two §- or R- waves are
represented by region boundaries in the form of circles,

Let us assume that the initial conditions are such that the three-dimensional initial
discontinuity disintegrates into the 4K A.S combination. In the AvAw -plane the
equation of the line cormesponding to that combination is

(Av. —Lfi = RY, R = G (Gaio + ) 6.4)
’ HO
L=—aAop.og aAolLo"ll;ollHI'i‘T(lHol Ho')(lHﬂl |H0|)|H |

where the subscript T at H; is omitted.
The line defined by Eq. (6. 1) is a circle whose center is at point Av = L,
Aw = L, and radiusisequal |R |.

Let H;, || H:y'. We select the direction of the magnetic field as the y -axis
and make the 2 -axis perpendicular to the ¥ -axis and to the normal discontinuity
surface. The center of circle (6. 1) lies on the axis Aw = 0 so that circle inter -
sects the axis Aw = 0 at two points Av, and Aw,  One of these corresponds
to the K.§ -combination and the other to the 4K A4S -combination, where the mag-
netic field is turned by 180° in the A -discontinuities, Points A?z; and Av,
lie at distance | R| from point Av. — L,.

Thus for Hqq | Hey' the line AKAS can be determined as follows. The line

H = H,’ is drawn in the vH -plane (Fig. 3) ; its intersection points with the lines
that correspond in that plane to combinations K.S' and AKAS are plotted on the
Av -axis in the Av, Aw -plane, and these points are rotated about the center. The
described line divides the two regions SAKAS and RAKAS.

If the magnetic field vector to the right of H:o is not parallel to the magnetic
field vector to the left of H:,', then L, 5= 0 and the radius of circle (6. 1) remains
unchanged. Hence in this case the line to whichin the Av Aw -plane corresponds to
the AKAS -combination is a circle drawn on the assumption that H.y, H.," and
shifted in accordance with Eq. (6. 1).

Let us consider the case of | H.,' | >> | Heo| with an arbitrary angle between

Hfo and Hfo' . In that case the circles in the Av Aw -plane, which correspond
tothe AKAS -and RAKA -combinations, lie one inside the other and divide
the entire plane in regions which correspond to combinations SAKAS, RAKAS,
and RAKAR (Fig.4). The equations of these curves are similar to (6. 1),

When |H.,’ | << | Hqo | itis necessary to plot in the Av Aw -region the
two curves that correspond to combinations SAKA and AKAR and divide
the plane into three regions which correspond to combinations §4KAS, SAKAR,
and RAKAR (Fig.5).

If |H.' | = |Hz |, the circle that corresponds to the A KA -combination
divides the Ap Ay -plane into two regions: SAKAS and RAKAR (Fig.6).

Let all parameters of the medium on both sides of the discontinuity plane be spe-
cified. Since the components of field He, | H.,’ are specified, it is clear for which
lines we have to write down the equations, using formulas (2. 9), (3.8). and (4. 1), in
order to construct the related pattem in the A? Aw -plane. Having constructed the
pattern with known Ay and Aw we find the region in which the point with these
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coordinates lies, i.e.we determine the combination of waves and discontinuities into
which the initial discontinuity disintegrates.

s samas sw|  AKA_ SAKAS
RAKAR

v 4v
Fig.4 Fig. 5 Fig. 6

Equating the sums of jumps of each magnetohydrodynamic quantity at each of the waves
and discontinuities generated at the initial jump, we obtain a system of algebraic
equations that has to be solved numericaily,

The authors thank V. V. Gogosov for suggesting the subject of this paper.
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